Noniterative blind data restoration by use of an

extracted filter function
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A signal-processing algorithm has been developed where a filter function is extracted from degraded data
through mathematical operations. The filter function can then be used to restore much of the degraded
content of the data through use of a deconvolution algorithm. This process can be performed without
prior knowledge of the detection system, a technique known as blind deconvolution. The extraction
process, designated self-deconvolving data reconstruction algorithm, has been used successfully to restore
digitized photographs, digitized acoustic waveforms, and other forms of data. The process is non-
iterative, computationally efficient, and requires little user input. Implementation is straightforward,
allowing inclusion into many types of signal-processing software and hardware. The novelty of the
invention is the application of a power law and smoothing function to the degraded data in frequency
space. Two methods for determining the value of the power law are discussed. The first method
assumes the power law is frequency dependent. The function derived comparing the frequency spec-
trum of the degraded data with the spectrum of a signal with the desired frequency response. The
second method assumes this function is a constant of frequency. This approach requires little knowledge

of the original data or the degradation. © 2002 Optical Society of America

OCIS codes:

1. Introduction

A blind deconvolution technique has been developed
that enables efficient restoration and enhancement of
degraded data. The process compares the magni-
tude of the data in Fourier space to the same quality
of a specified truth image. A filter function is de-
rived from the comparison and used as a transfer
function for restoring the original data. The pro-
cess, designated self-deconvolving data reconstruc-
tion algorithm (SeDDaRA)'2 has been successfully
applied to digitized images, ultrasound waveforms,
and sound recordings. Application requires little
user input and is computer efficient.

Signal reconstruction based on deconvolution has
been thoroughly studied.?>-?” Blind deconvolutions
are less prevalent although a sizable amount of re-
search has been conducted recently.8-13

SeDDaRA is applicable when the degradation is
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space invariant as it estimates the impulse function
from the entirety of the data through power-law map-
ping. In cases where the degradation is not uniform
across the data set, some restoration is still possible.
However, this produces some nonphysical artifacts.
The algorithm has been applied successfully to im-
ages that contain significant noise. A formal study
on the influence of noise has not yet been conducted.

2. Deconvolution Theory

The objective of data restoration is to remove degra-
dation from data that, with an ideal detection system,
would not be present. If the form of the degradation
is known, a class of deconvolution processes can be
used to remove the defect as best as possible. For
one-dimensional signals, the degradation could be
caused by unwanted low-pass filtering processes.
For images this degradation could be caused by mo-
tion blur, a partially blocked aperture, or an improp-
erly focused lens system. The impulse function d(x)
represents how an impulse signal is received by the
data collection system. A mathematical representa-
tion of the degraded data g(x) is

g(x) = f(x) * d(x) + w(x), (1)

where f(x) is the truth data, w(x) is a noise term, and
% denotes the convolution.3 The objective is to find



(b)

Fig. 1. (a) Truth image of a bowl of fruit taken with a digital
camera; (b) convolution of the image with a point spread function.

the best estimate of f(x) from g(x) when d(x) and w(x)
are unknown. This relationship is simplified by
transferring both sides of Eq. (1) into frequency space
via application of a Fourier transform,4 yielding

G(u) = F(u)D(u) + W(u), 2

where u is the coordinate in frequency space, and the
transformed functions are represented by capital let-
ters.

If d(x) is known, a deconvolution process can be
applied to g(x) to approximate f(x). Many deconvo-

lution algorithms, such as nonnegative least squares
and the Wiener filter, can be found in the
literature.3-15-17  For the following study, a pseudo-
inverse filter will be used. The deconvolution is
given by

G(u)D*(u)

O Dk

3

where the parameter K is typically chosen by trial
and error. This filter is easy to apply and works well
with most data.

In many situations, d(x) is not measurable and
cannot be easily modelled. To address this, a range
of solutions has been developed known as blind-
deconvolution algorithms. Blind deconvolution is
a general term describing techniques that remove
aberrations where d(x) is unknown. Blind-
deconvolution techniques can be either iteratives-12
or noniterative.1318 Iterative techniques, which
comprise of the majority of blind-deconvolution tech-
niques, are based on equations that require multiple
applications. As such, they generally require a sig-
nificant amount of computation and can be difficult to
implement.’® Often, both classes require that at
least a certain amount of information about the deg-
radation be known.

A. Derivation

The objective is to derive the transfer function D(u)
from G(u) for use in a deconvolution algorithm. To
do so, we assume the degradation is invariant, D(u) is
real, and has the form

D(u) = [KsS{|G(u) — W(w)[}]1*™, (4)

where a(u) is a tuning parameter and K is a real,
positive scalar chosen to ensure [D(u)] = 1. Appli-
cation of the smoothing filter S{...} assumes that
D(u) is a slowly varying function. For images, a
median filter consisting of a 3 X 3 pixel array is
usually used.3 Increasing the size of the array has
the effect of reducing the influence of noise, but may
limit the reconstruction of the higher-frequency com-
ponents.

Equation (4) is subject to the conditions that (1.)
0 = a(u) < 1, (2.) the smoothing filter S{. . .} is sep-
arable, and (3.) that F(u) and W(u) are uncorrelated.
Equation (4) states that application of a smoothing
filter and power law to the power spectrum of the
truth image, when chosen correctly, will produce the
degradation. Although stated as an equality, in
practice this is an approximation stemming from as-
sumption (2.). For simplicity, W(u) will be assumed
to be negligible. To date, to our knowledge, a formal
study on the influence of significant noise has yet to
be conducted.

Because D(u) is assumed real, Eq. (2) can be re-
stated as

S{IG@)[}
Du)=——"1, (5)
S{IF)[}
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Fig. 2. Line plot of the frequency spectrum of the four images.

The y axis is a logarithmic plot of the frequency response amplitude

normalized to unity. The second y axis is a plot of the alpha function. Notice how the value can be approximated by 0.28 for all but the

lowest frequencies.

where the smoothing operator has been applied. Be-
cause D(u) is assumed to be a slowly varying func-
tion, it can be removed from the influence of the
smoothing operator.

To solve for a(u), Eq. (5) is substituted into Eq. (4)

S{GwW _ KeS{IGw)l}
S{IF@)}  KpS{F' ()}

Because the truth data F(x) is unknown, we have
replaced it with a data set F'(x) that contains the
desired characteristic frequency spectrum, where K.
is another scaling parameter. Given the presence of
the smoothing filter, the replacement data set needs
to satisfy

~[KeS{G@)[*.  (6)

KpS{|F' ()|} = KpS{|F(u)]}. (7

Preferably, this function would be a theoretical model
of the anticipated result with the source of the deg-
radation removed from the equation. However, be-
cause modelling a detection system is often
complicated, using an existing fair representation of
the truth data can be more efficient. For example,
an in-focus image of a terrestrial mountain can be
used to restore an out-of-focus image of an extra-
terrestrial landscape.
Solving for a(u) produces

Ln[KS|G(w)|] — Ln[KpS{|F'(w)}]
Lin[KS|G(u)[]

In this relation, K, and K must be determined such
that |[D(u)| = 1. This condition is satisfied if we set
Kg = 1/Max[S{|Gw)|}] and Kf = 1/Max[S{|F'w)|}].

8

alu) =

6886 APPLIED OPTICS / Vol. 41, No. 32 / 10 November 2002

It follows that
D(u) = {KsS{|G(w)[}}*™, 9)

where a(u) is given by Eq. (8).

Substitution of Eq. (8) into Eq. (9) produces an
approximation of Eq. (5), providing a more concise
result. Expressing the relation as a power-law rela-
tion, however, enables one to approximate «(u) as a
constant. This permits further simplification of the
process and comprises of a fully blind deconvolution
algorithm. This approach is discussed in the next
section.

B. Frequency-Independent Alpha

In some situations, the function a(x) can be approx-
imated by a constant value. For example, most nat-
ural scenes possess a frequency spectrum that peaks
in the lowest frequency range and rapidly decreases
for higher spatial frequencies. Application of a
power law, i.e., with a constant value for o with 0 =
a < 1, can enhance the part of the curve that is most
affected by a blur function.

This is demonstrated by the following images.
Figure 1 is an image of a bowl of fruit (a) and its
convolution (b) with a point spread function. The
frequency-dependent deconvolution algorithm was
applied to the image to produce a(x). A line plot of
the function is shown in Fig. 2. Aside from the low-
est frequencies, a(u) can be approximated as a =
0.28. By using this value and the frequency inde-
pendent method, a point spread function was ex-
tracted and used to deconvolve the image. The
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Fig. 3. (a) Restoration of the image using « = 0.28 and a pseudo-
inverse filter; (b) restoration of the image by using a frequency
dependent a(z) and a pseudo-inverse filter.

result, shown in Fig. 3, (a) is a significant improve-
ment over Fig. 1 (b), and compares favorably to either
the truth image or the frequency-dependent deconvo-
lution, shown in Fig. 3 (b). The function |F(x)'| in
this case has been derived from the actual truth im-
age.

The value a becomes a tuning parameter satisfying
0 = a < 1, chosen by trial and error. In most cases,
a = 0.5 has proven to be an effective initial choice.
Reconstruction quality does not significantly differ

Fig. 4. This image (a) was taken by the space probe Galileo of the
surface of Io.19 Although the image already exhibits a fair
amount of high resolution, application of the frequency-dependent
restoration process brings out more detail (b).

for variations less than *+0.05. This approach has
been discussed in a previous paper.!

3. Examples

This technique has been applied to an image of the
surface of the moon Io of Jupiter taken by the space
probe Galileo,® shown in Fig. 4 (a). Although the
image exhibits good resolution, the application of
SeDDaRA, shown in Fig. 4 (b), brings out more detail.
This resolution used a synthetic Mandelbrot-type
fractal image as the source for |F(u)’|.

The detail in Fig. 4 (a) may be recovered by stan-
dard means, such as applying an edge filter. How-
ever, edge filters can only be described as an image
enhancement technique that amplifies spatial fre-
quencies to improve the image visually. SeD-
DaRA, however, is a true image restoration
technique that restores frequencies that were de-
graded by system optics and electronics. There is
less danger of introducing features not present in
the original image.

As an example of an application on non-optical im-
agery, Fig. 5 is an x-ray image of a muscovy duck.2°
The restoration displays features that were not visu-
ally perceptible in the original image. The source
for the representative truth image, |F(u)’|, was Fig. 1
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Fig. 5. This image (a) is an x-ray of a muscovy duck.2 The
deconvolution (b) was restored with a frequency dependent a(u).
The white line indicates the path of the line plot shown in Fig. 6.

(a). A line plot was made across one wing to dem-
onstrate the improvement in contrast and resolution.
This is shown in Fig. 6.

Figure 7 (a) displays an original and restored ul-
trasound waveform that has traveled through air for
approximately a centimeter.2! In this frequency
range, higher frequencies are greatly attenuated.
Using Eq. (9) and a reference waveform, the fre-
quency dependent a(uz) was extracted from the image.
The transfer function was created and inserted into
the deconvolution algorithm. The source for the rep-
resentative truth data was a synthetic waveform.
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Fig. 6. This is a line plot taken across the wing as shown in Fig.
5. The restored image shows improved resolution when the algo-
rithm is applied.

The restored waveform exhibits additional peaks and
features that had not been apparent before. The
frequency spectra are shown in Fig. 7 (b).

As shown in the examples, the high-frequency con-
tent is significantly enhanced through this process.
However, with any blind deconvolution technique,
there is a risk of introducing nonphysical artifacts,
such as the deep valley at image index 25 in Fig. 6,
most likely the result of the influence of the pseudo-
inverse filter. Although new features, such as those
in Fig. 7 (a), can be revealed by using this technique,
their physical existence should be verified indepen-
dently if possible.

4. Conclusion

The SeDDaRA process has several unique character-
istics that are not found in current signal-processing
algorithms. At the core of the process, the applica-
tion of this method extracts a reasonably good ap-
proximation for the degradation of a signal in a
comparatively short amount of time, provided that
the degradation is invariant across the data set.
This algorithm is easy to implement, and can be in-
serted into existing signal-processing packages with-
out much difficulty. As demonstrated, the method
works well on a wide variety of signal types, including
imagery, acoustic waveforms, and any signal that
suffers from low-pass filtering. This is accomplished
without direct information about the type or extent of
aberration.

Potential commercial applications include image
processing, for both research-based and consumer-
based imagery. Aging photographs and movies may
be restored and preserved digitally, or reprinted.
Nonoptical images, such as medical ultrasound scans
and x-ray scans can also be improved. This tech-
nique can be a valuable research tool to recover the
full bandwidth of a signal, restoring the high-
frequency content. SeDDaRA may find application
in recording studios and home sound systems to coun-
teract effects created by room acoustics and enhance
the quality of the reproduction.
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exhibits several peaks that were not apparent in the original data.

The frequency spectra are shown on (b).
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